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y-RAMSEY AND y-INEFFABLE CARDINALS* 

BY  

JAMES M. HENLE 

ABSTRACT 

A number  of related combinatorial properties of a cardinal K contradicting AC 
are examined. Chief results include: (1) For many ordinals % K --~ (K) ~ implies 
K --~ (K) <*. (2) For many ordinals % if K --~ (r)~ for all t~ < K, then K is ~,-weakly 
ineffable. (3) For all infinite cardinals 7, K - ~ ( x )  <~ implies K is < ~-weakly 

ineffable. 

In recent years there has been a growing interest in cardinals satisfying 

infinite-exponent partition relations. Despite their incompatibility with the full 

Axiom of Choice [9], the existence of such cardinals leads to many interesting 

results [3], [4], [7], [8]. The proofs of these are often distinctive and appear to 

have a flavor of their own. Drawing on few outside theorems and using methods 

constrained by lack of Choice, they build on each other and create a delicate and 

peculiar universe. At present these cardinals are chiefly obtainable through the 

Axiom of Determinateness (AD) [10], [11]. AD in fact implies ~11~1"--) (~111~1) Mi, a 
property which, as we shall see, implies all those considered in this paper. Apart 

from this, the consistency relative to other axioms of the existence of these 

cardinals is unknown. As a measure of the difficulty Kleinberg has shown that 

K ~ (K)'§ implies that the o~-closed, unbounded filter is a measure on K, while 

Martin has shown that a consequence of this is the existence of models of ZF 

with very many measurables. 

The most natural way to view cardinals satisfying infinite-exponent partition 

relations is as infinite generalizations of weakly compact cardinals. Considera- 

tion of this suggests infinite generalizations of similar but stronger cardinals: 

Ramsey and ineffable cardinals. The purpose of this paper is to make the 

necessary definitions and prove some general and specific results concerning 

such cardinals. 

* Many of the results in this paper appeared originally in the author 's  doctoral dissertation. 
Received March 13, 1977 and in revised form June 3, 1977 
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Sect ion 1 is conce rned  with 3 , -Ramsey cardinals.  T h e  first and only prev ious  

result  on these is due to E.  M. Kle inberg  [7] who  proved:  

TrtEOREM. I f  K, 3' are any  infinite ordinals,  then  

(a) K ---> (K)~+~ impl ies  K --> (K)7* for  all a < K, a n d  

(b) K ---> (K )'~o impl ies  K ---> (K )<~. 

At  first g lance it seems  appa ren t  that  the p rope r ty  of being 3 , -Ramsey 

(K ~ (K)<*) is strictly w e a k e r  than satisfying K ---> (K)~. T h e  p rob l em,  however ,  is 

that  with 3 , -Ramsey cardinals,  we are forced to deal  with 3,-many part i t ions.  

Never the less ,  that  genera l  principle is a lmost  always true,  though  the ques t ion  is 

not  yet  closed. In this sect ion we will p rove  for  cons iderably  m a n y  3' that  

K ---> (K)~ does  imply K ~ (K)<*. T h e  least 3' which will fail to be  covered  by the  

t h e o r e m s  is the  o therwise  undis t inguished ordinal ,  to �9 to + to. 

Sect ion 2 is conce rned  with 3'- and < 3,-ineffability and weak  ineffability. It 

will be  easily seen f rom the definit ion that  if r is 3,-weakly ineffable,  then  

K "--> (K)~'o for  all a < K. Mot iva ted ,  as in the prev ious  section,  by a desire  to 

equa te  new cardinals  with old, but  using ent irely different  techniques ,  we will 

show that  for  m a n y  ordinals  3,, K ---> (K)~'o for  all a < K implies  that  K is 3,-weakly 

ineffable.  W e  will also p rove  that  for  all cardinals  r ,  if K is 3 , -Ramsey,  then K is 

< 3,-weakly ineffable.  W e  will show fur ther  that  it is not  of ten possible  for  K to 

be  3'- or  < 3,-ineffable. 

00. Definitions 

In this paper ,  K will a lways deno t e  an uncoun tab le  cardinal .  All o the r  G r e e k  

let ters m a y  rep resen t  a rb i t ra ry  ordinals.  For  any K, 3', the set [K ]~ is the  set of all 

subsets  of K of o rde r - t ype  3'. W e  will some t imes  view a m e m b e r  of [K]~ as a 

subset  and some t imes  as an increasing funct ion f rom A to K. It  will always be  

clear  f rom the context ,  however ,  which mean ing  is in tended.  

An  infinite ordinal  3' with the p rope r ty  that  ct < 3, implies  c~ + ct < 3' is said to 

be  i n d e c o m p o s a b l e  ( somet imes  called a " p o w e r  of to").  

G iven  any ordinal  a and  set A, a cardinal  K satisfies K---> (K)~, if[ for  all 

par t i t ions  F :  [K] ~ ---> A, there  is a set X _C K, .~ = K such that  F " [ X ]  ~ = 1. 

In  this nota t ion,  r ---> (m<)~ may  also be  wri t ten K ---> (~<)L If K does  not  satisfy 

K ---> (K)~, then we wr i t e  K -/, (K)7,, and if F if a par t i t ion which fails to have  a 

h o m o g e n e o u s  set, we say it is a bad  partit ion. 

Cer ta in  facts are i m m e d i a t e  f rom the definitions: 
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FACt 1. If r is a cardinal satisfying K ~ (K) a, and /3 < a, then K satisfies 

K --, (K)~. 

FACT 2. If a cardinal r satisfies K ---* (K)',  then K satisfies K ~ (K)7, for all n. 

The proofs of these facts are elementary.  For  the first, note that a --> 2 implies 

K is regular by standard methods.  Induction on n suffices for the second. Fact 1 

implies among other things that K is weakly compact ,  and hence regular. 

We say that K is y-Ramsey, or that K satisfies the relation K ~ (K) <* if[ for all 

partitions F:  [r]<~--~2, there is a set XC_r,  f f =  K such that for all a < %  

F"[X] ~= 1. X is said to be homogeneous for F. Note  that by this definition a 

Ramsey cardinal is an to-Ramsey cardinal.* 

Given K, y, K is said to be y-weakly ineffable (resp. y-ineffable) if given any 

collection {Ap}p~[,l, of subsets of K such that for all p E [K] ~, Ap _C p(0), then 

there exists a set X _C K, ,~ = K (resp. X stationary) and set A _C x such that for 

all p E [X] ' ,  Ap = A (3 p(0). We call X the cohering set for {Ap}pet, j,. Two sets 

Ap and Aq such that p(0)=< q(0) are said to cohere if Ap = Aq r p(O). Note: X is 

a stationary subset of K if X intersects all closed, unbounded subsets of K. 

For y finite, y -weak  ineffability is a strictly stronger proper ty  than K ---, (K)~', 

for all 3, < K. With AC, it is shown that the least K which is 1-ineffable, is greater  

than cardinals satisfying K --~ (K)~ for all n < K, )t < K. Among  the more  popular  

large cardinals,** only the Ramsey  cardinal is strong enough to be 1-weakly 

ineffable. Ineffable, or I-ineffable cardinals were invented by Jensen and Kunen 

[6]. The hierarchy of n-ineffable cardinals was originally defined by Baumgart-  

her. The relationship between these and other  cardinals is detailed in his papers 

[1], [2]. 

Given K, y, K is said to be < y-weakly  ineffable (resp. < y-ineffable) if given 

any collection {Ap}p~l,] <, of subsets of r such that for all p E [K] <', Ap C p(0), 

then there exists a set X _C K, )C = K (resp. X stationary) such that for all a < y, 

p, q E [X] ~, Ap and Aq cohere. 

w y-Ramsey cardinals and obliging ordinals 

An ordinal 3' is called obliging if it can be proved that K--~(K)* implies 

K ---~ (r)<*, for all cardinals K > y. 

t Note that for all r ,  K 7~ (K)<'. The partition F :  [K ]<" ~ 2 defined by: if p E [K ]*, F (p )  = 0 iff 
p(0) = a provides a counterexample. 

*' For example, none of the following cardinal properties guarantee weak ineffability: strong 
inaccessibility, weak compactness, Mahlo, Jonsson, Rowbottom, a -Erd6s  (the least y such that 
y--, (,~)~'). 
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Our first goal will be to show that all indecomposable ordinals are obliging. To 

this end, we require the following lemma: 

LEMMA 1. Given that an indecomposable ordinal 3' is expressible as a �9 where 

a and/3  are limit ordinals less than % then 3" is obliging. 

PROOF. Suppose we are given a partition F:  [K] <' -02.  We make the follow- 

ing definitions: we shall say two sequences p, q E [K]" are similar whenever 

F(p  r A) = F(q [ A) for all a < 3'. 

The set {A < 3' IF(/,  r A)= o} is called the similarity type of p. 

If p ~ [K ]', let p = I..J 8<8 ps, where the {p8 }8 <8 are the successive blocks of p of 

length a, i.e., for all 8 </3, p8 E [p]* and if /$1 </$2, then U p , , <  f ]  ps. If 

q E [/3] 8, let pq be the element of [p]" consisting of I..J6~qps. 

We now define G:  [K]" -02  by: G(p)  = 0 iff for all q E [/3] 8, p is similar to pq. 

Since K -0 (K)', let X C_ ~, .~ = K be homogeneous for G. 

CLAIM. G"[X]" = {0}. 

PROOF OF CLAIM. Let H :  [r]  ~--) 2" be defined by H ( q ) =  the similarity type 

of Xq = I--Js~qx~ where X = Us<~Xs, x8 E [X] ~ and 81 </$2-0 Uxs, --< I"lx~. 

pq = U ~ p ~ .  

Since/3 +/3 < y, Fact 1 and Kleinberg's theorem imply K -0 (K)~,, hence there 

is a set Y_C K, ~ ' =  K, homogeneous for H. Let q E [Y]a. It follows that 

Xq E [X]" and that G(Xq) = 0, and hence G"[X]" = {0}. 

We now claim that X is homogeneous for F:  Suppose that A < 3' and 

p, q ~ [X] ~. Let p '  and q'  extend p and q respectively such that p',  q ' E  [X] ~'" 

for some 77 </3 (since /3 is a limit ordinal), and let r E [X]" be such that 

t i p ' ,  I,.Jq' = I'] r, and so p" = p'  U r and q" = q' U r are in [X]" by the indecom- 

posability of y. Then since G"[X]" = {0} the similarity types of p", q" and r are 

the same, so 

F ( p ) =  F(p"r  A ) = F(q"[  A ) = F(q) .  

This completes the proof of Lemma 1. [] 

THEOREM 1. For any ordinal % if 3, is indecomposable, then 3" is obliging. 

PROOF. Let F:  [ K ] < ' ~ 2  be any partition. For any p E[K]" consider the 

following list of equations: 
F(p(0)) = F(p(1)), 

F(p (2), p (3)) = F(p (4), p (5)), 
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where in general, t h e / 3 t h  equation for /3  < 3' is 

F(p(a~),p(a~ + 1 ) , . . . , p ( a #  + 8),... ),<, 

= + / 3 ) , . . . ,  + / 3  + 

and where ao = 0, t~ = 2, and 

0~18+ 1 = a# + /3 "2, 

a~ = U a~ for h a limit ordinal. 
#<X 

We have two cases: 

Case 1. We are unable to complete  the list because for some/3 < 8, ot# _-> 3'. 

Case 2. The length of p, 3', is large enough to complete  this list. 

First, case 1. Suppose we have used up all of p before the /3 th  equation. Then 

(/3 +/3)"/3 --> 3'. Let  a be  the least ordinal such that for some 8 < % t~ �9 8 _-> 3', 

and let 8 be the least ordinal such that ct �9 8 _-> 3'- By the indecomposabil i ty of 3', 

B is a limit ordinal, and hence so is a. Since t~ �9 it < 3' for all A < 8, it then follows 

that a �9 8 = 3'. L e m m a  1, then, shows that 3' is obliging. 

Now, case 2. We define a partition G :  [ r ]  ~ - - 2  by: 

for any p E [K] *, G ( p ) = 0  iff all the equations in the list are true. Let 

X E [K ]~, .~ = r be homogeneous  for G. 

CLAIM. G"[X] "r = {0}. 

PROOF OF CLAIM. Simply define a sequence p E [X] ~ such that G ( p ) - -  0 as 

follows: 

Let p(0), p(1) be the least elements of X such that F ( p ( 0 ) ) =  F(p(1))  and 

continue in this way. To  avoid any use of the Axiom of Choice, choose the 

members  of p consecutively: suppose we have chosen enough elements  of p to 

satisfy the first/3 equations for all/3 < a. To satisfy the a th equation, take the 

first a . 3  members  of X greater  than all members  of p chosen so far: 

80, 81, '"  ", 87 , "  "7<, 3 and consider F(80, �9 �9 ", 8 7 , ' "  ) ,< , ,  F(8~, �9 �9 -, 8~+~, �9 �9 �9 )~<, 

and F(8  . . . .  . . . ,  8,+~§ Two of these must be equal, and whichever 

they are, add the appropr ia te  e lements  to p. When p is complete,  all the 

equations are true, and G ( p ) =  0, proving the claim. 

To complete  the proof  of the theorem, we observe that X, minus its first 3' 

members  constitutes a homogeneous  set for F, for suppose for some a < y, 

p, q ~ [X - X ( y ) ] L  Let r E IX]"  be such that U p ,  U q  < r(0), and then form 

s~, s2E [X] ~ such that for s~, the a t h  equation in the list reads " F ( p ) =  F(r)", 
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and such that for s2, the a t h  equation in the list reads " F ( q ) =  F ( r ) " .  Since 

G(s 0 = G(s2) = 0, these equations are both true, and hence F (p )  = F(q). [] 

The situation where y = a +/3, a, /3 < y is more difficult. The following 

results cover a number  of cases, but by no means all. 

THEOREM 2. I f  y is obliging, then y + n is obliging for all n < to. 

PROOF. By induction on n. If y + n - 1  is obliging, any partition 

F:  [K]<'§ 2 can be handled in two steps, first find X _C K, 3~ = K homogene- 

ous for F r [ x ]  <'+"-1, then find YC_X,  ~ ' =  x homogeneous for F r [ x ]  "+'-~. 

The next lemma and theorem can be viewed as an extension of Kleinberg's 

theorem. 

LEMMA 2. Suppose x satisfies K ~ (K) ~+~, where a is obliging and fl <- a is 

indecomposable. Then : K "--> (r )<~ § if/ K --~ (r )~. 

�9 PROOF. Suppose r satisfies x ~ (K) <~§ Then if we are given any partition 

F:  [K] ~ --->2 a we can define a partition G:  [r]<'+u--->2 as follows: if p E [K] A, 

A < ct +/3, then: if A < a, G(p )  = 0, otherwise; if A = a + 8 for some 8 </3, then 

G ( p )  = 1 iff 8 E F(p  t a ) .  

If X is any set homogeneous for G, it must also be homogeneous  for F. If 

p,q E IX] ~ and 8 </3, simply let r E  IX] ~ be such that Up ,  U q  _-< f'lr. Then 

8 E F ( p )  iff G ( p 1 3 r ) = l  iff G ( q U r ) = l  iff 8 E F ( q ) .  

Going the other  way, suppose F:  [x]<a*~--->2 is any partition. Since a is 

obliging, let X_C x, J~ = x be homogeneous for F~[K] <~ Next, define 

G:  [X]a+~-~2 by: if p 13q E IX] ~§ (/9 E IX] ~, q E IX] u, Up__< ( ' )q) ,  then 

G(p  U q) = 0 iff q is homogeneous for p, that is, G(p  13 q) = 0 iff for all A </3  

and for all q', q" E [q]A, F(p  U q')  = F(p  U q"). Let Y _C X be homogeneous  for 

F , ? =  K. 

CLAIM. G"[Y]  ~+~ = {0}. 

PROOF OF CLAIM. Choose any p E IX] * and define H :  [ Y -  Up]<~--->2 by 

H(q)  = F(p 13 q) for all q E [Y - U p ]  <~. Since/3 =< a, we have K ~ ( r )  ~§ and 

so by Kleinberg's theorem, there is a set Z C Y -  U p  homogeneous for H. 

Then, if q E [Z] ~, then G(p  13q) = 0, hence G"[Y] ~*~ = {0}. 

CLAIM. For any p E [ Y]*, Y - U p  is homogeneous for F with p, that is, if 

8 < /3  and s~, s2~ [ Y -  Up]*,  then F(p  U s~)= F(p  13 s2). 

PROOF OF CLAIM. Given any such p,s~,s2 let s3 E [ Y - U p ]  8 be such that 

Us t ,  Us2 < s3(0). Since/3 is indecomposable, let q~, q2 E [ Y -  U p ]  ~ be such 
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that s~tos3C_ql, s2Us~C_q2. Then singe G ( p  Uql )  = G ( p  U q z ) = 0 ,  we have 

F (p  U sl) = F ( p  U s3) = F(p  tO s2), proving the claim. 

As a consequence of this, for any p E [Y] ' ,  there is associated a subset 1(/7) of 

/3 defined by: 

8 E l ( p )  iff for all q ~ [Y - U p ]  ~, F (p  U q) = 1. 

This defines a partition I :  [Y]~ --~ 2 ~. Let Z C Y, 2 = K, be homogeneous  for I. 

CLAIM. Z is homogeneous  for F. 

PROOFOF CLAIM. Suppose sl, s2 E [Z]  <~§ If ~1 = g2 < a, then F(s~) = F(sz) by 

the homogenei ty  of X. If ~1 = g2 -> a, and p~ = s~ [ a, p2 = s21 a, let ql, q2 be such 

that p~ tO qm = s~ and p2 U q2 = s2, Up~ _-< n q ~ ,  Up~ _-< n q 2  and let 8 = t71 = t~2. 

Then, 

F(s~) = 1 iff 6 e 1(1Ol ) iff 6 ~ I(p2) iff F(sz) = 1. 

This completes  the proof  of the lemma. [] 

THEOREM 3. If y is indecomposable, then for all n >= 1, y �9 n is obliging. 

PROOF. The  proof  is by induction on n. The  case for n = 1 is covered by 

Theorem 1. 

Suppose 7 " n is obliging, n < to. By the previous lemma,  to prove 1' "(n + 1) 

obliging, it suffices to show that r ~ (r)2\". In the interests of generality, we will 

show K ~ (K)~s for all a < K in two stages. Our  first step will be to show that 

K --+ (K)~" " for all o~ < K is a consequence of K --> (K) "("§ 

Suppose F:  [K]""---> Ol is any partition. Let G :  [K]" . . . .  --~ 3 be the following 

partition: if p0, pl, " �9 " ,  p .  E 

G ( p o U - ' "  U p . )  = {  

[K]% and Up~ ~ rip,+1 for all i < n, then: 

0 i f fF(poU'"Up.-1)=F(plU" 'Up.)  
1 i f f F ( p o U " . U p , - O > F ( p l U ' " U p , )  

2 iff F ( p o U . . . U p , - ~ ) < F ( p l U ' " U p , ) .  

By Fact 2, K ~ (K)~""+L Let X C K, .,Y = K be homogeneous  for G. 

CLAIM. G " [ X ]  v '"+v= {0}. 

PROOF OF CLAIM. Clearly G " [ X ] " " + ' #  {1} for we could then choose for all 

n < to, p. ~ [X] ' such that U p ,  < rip.+1 and then 

F(po u . . -  u p . - , ) >  FLo, u - - - u p . ) > . . .  > F(p  U . . .  U �9 �9 �9 

an impossibility. 
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Suppose O"[X]  " ' "§  {2}. Let {q,}a<=+, be successive sequences from [X] of 

length T ' n ,  i.e., for all 8 < a + 1 ,  q , E [ X ] " "  and 8 < 8 ' < a + 1  implies 

I..Jq, < f')qa,. For each 8 < a + 1, let p r 1 6 2 1 6 2  be the successive ~, 

sequences composing q,. Then for all 8 < 8 ' <  a + 1, 

F(q6) = F(p~,oU ps., U... U p~,._,) 

< F(p~,  U . . . U p~ . - ,  U ps,,o) 

< F ( p , , o  U " "  U p~,..-,) 

= F ( q ~ , ) .  

Thus, {F(q~)}~<~ forms an increasing t~-sequence, and F(q=)>= el, an impossibil- 

ity, proving the claim. 

We now claim that X is homogeneous for F, for if p, q E [X] ,n ,  let r E [X] ~"  

be such that Up,  U q  < Or .  Once again, let po, p l , "  �9 , p , - i  and r0, r l , - . . ,  rn-~ be 

the successive ~/ sequences of p and r respectively. Since G"[X] ~'"+~= {0}, 

F ( p )  = F(po U . . . U p._,  U to) 

= F(p1U"" Up.-~ U roUrl) 

= F(ro  u . . .  u r ._ , )  

= F ( r ) .  

Similarly, F ( q ) =  F(r)  and X is homogeneous for F. 

Using the relation, r ~ (K)~" for all a < K we will now show K ~ (r)~d". 

Suppose F:  [K]""--*2" to be any partition, a <K. Let G:  [K]~'"-*a be 

defined as follows: if p ~ [K ]v", then 

0 if F(p)  = F ( q ) ,  for all q E [p]"",  

O(p)  = /3 + 1 if/3 is the least ordinal such that for 

some q E Lo]"", /3 is in one, but not 

both of the sets F ( p ) ,  F ( q ) .  

Let X _C r, ..~ = K, be homogeneous for G. 

CLAIM. G " [ X ]  v '== {0}. 

PROOF OF CLAIM. Suppose G"[X]"  " =  {/3 + 1}. Define H :  [X]~'"---~2 by 
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H ( p )  = 1 i f f /3  E F ( p ) ,  for  all p ~ [X]  ~".  Le t  Y _C X, f" = K, be  h o m o g e n e o u s  

for  H.  It  is c lear  that  for  any  p E [ Y ] ~ "  and q ~ [p ]~" ,  

F ( p )  fq /3 = F ( q )  n by the h o m o g e n e i t y  of  X, 

F ( p )  71 (/3 + 1) = F ( q )  N (/3 + 1) by the h o m o g e n e i t y  of  Y, 

hence  G ( p ) > / 3  + 1, a contradic t ion,  and the  c la im is p roved .  

Suppose  now that  p, q ~ [X]  ~'" are  such that  the consecut ive  s u p r e m u m s  of 

their  consecut ive  y - s e q u e n c e s  are  the  same,  i.e., that  p = po tO . . .  tO p,-1 and 

q = qo to �9 �9 �9 tA q,_~, p,, q~ E [X]  ~, and that  U p ,  = U q , ,  for  all i. It then  follows 

that  F ( p )  = F ( q ) ,  because  each p, tO q, is a m e m b e r  of  [X]  ~ (a consequence  of 

y ' s  indecomposab i l i ty )  and so p tA q E [X] ~".  Thus  G ( p  U q)  = 0 implying that  

F ( p ) =  F ( p  tO q ) =  F(q) .  Hence ,  we may  m a k e  the  fol lowing u n a m b i g u o u s  

definition: H :  [K]" ---* 2 ~ is def ined by: for  all (/30,/3~,'" " , / 3 . -0  ~ [K]", 

/-/((/30,/32,..-,/3.-~)) = { 
A if for  a l l i < n  there  i s a p ,  E [ X ]  ~, 

with U p ,  =/3, < ("lp,+~ and 

F(po U . . . U p,_O = A 

otherwise.  

Since [K]" is wel l -orderable ,  H"[K ]" is wel l -ordered.  By the  above  a rguments ,  

H"[K ]" _D F"[X]  ~". By a wel l -known theorem,  there  can be no K sequence  of 

distinct e l emen t s  of  2 ~ ( the p roof  requires  no m o r e  than  r ~ (r)4, see [7]), thus 

the cardinal i ty  of  F"[X]  ~"  is /3 < r.  Le t  [ :  F"[X]V"---~/3 be  a one -one  map.  

Since K---~(r )~" ,  there  is a h o m o g e n e o u s  set Y C_X, I 7" = r such that  Y is 

h o m o g e n e o u s  for  f o F. Y is then h o m o g e n e o u s  for  F. This  comple t e s  the p roo f  

of  T h e o r e m  3. [ ]  

A s  a corol lary,  we have:  

COROLLARY. t For all indecomposable y, 

1) K ~ (K )  "/'(n+l) implies r ~ ( r ) ~ "  for all /3 < K, and  

2) K ~ ( r )~ ' "  ]:or all fl < r implies K --* (r) '~" for all 18 < r. 

T h e  hypothes i s  that  a < y implies  a + a < y was used only once,  and  it seems  

avoidable ,  though not  wi thout  difficulty or  new techniques .  

T h e  least infinite ordinal  not  cove red  by T h e o r e m s  1, 2, and 3 is to �9 to + to. 

Baumgartner has pointefl out to me that the techniques of the previous proof can be cleverly 
expanded to yield: "if h is a limit ordinal, then ~r --~ (~)~ implies K ~ (K)~". The restriction that A is 
a limit can also be eliminated. 
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Since proving this obliging will require proving that K--~ (K) . . . . .  implies 

K --~ (K)~",  it does not look easy. 

In closing this section, it should be noted that a simple application of the 

techniques used above will produce results of the following sort: If 3' is 

sufficiently large (a cardinal, for example,  or a Ao-admissable, etc.) then 

K --* (K)<~ implies g ~ (K)~  for all a < % where this latter proper ty  is defined in 

the obvious way. 

w ~/- and < y-ineffable cardinals 

The proper ty  of being y-weakly  ineffable implies K ~ (K)~ for all a < K, and 

in fact implies K ~ (K)~ for all a < K, for if we are given a partition F: [K ]~ ~ 2 ", 

we can define for all p E[K - a ]  ~, Ap = F(p) ,  and it follows that any cohering set 

for the Ap must be homogeneous  for F. Thus, if we are to prove a cardinal g to 

be y-weakly  ineffable, we must start with at least K--~(K) .2o for all a < K. 

THEOREM 4. If K --'>(K)2V~ for all a < K and to . 3 / =  7, then K is 3,-weakly 

ineffable. 

PROOF. Some necessary notation first. For any sequence p ~ [K] ~, let ~p be the 

sequence consisting of the consecutive to-sups of p, i.e., since to.3,  = 3/, let 

p = p o O p 1  U ' ' ' U p 8  U ' "  "8<~ where p~ E [p]~ for each 8 < y, and where 

8 < 8 '  < Y implies U p s  --< np~, .  

Then ,p is the sequence, U po, U pl, U p 2 , " "  or, ~ p ( 8 ) =  Up8 for all 

8 < 7 .  
Now, suppose we are given a collection {Ap}p~t,l~ of subsets of K such that for 

all p E [K] *, Ap _C p(0). For any a < K, let F~: [K] ~ -->2 ~ be the partition: 

F~(p)  = A ~ A  a, for a l lp  ~ [K]h 

By r ~ (K):~, there is a homogeneous  set X for F. Let A~ = F,~[X] . A,~ does not 

depend on the choice of X, for if X~ and X2 are both homogeneous,  we could 

choose p~ E [X~] ~, p2 E [X2]* such that for all 8,p~(8) < p2(8) < p~(8 + 1). In this 

way, ,op~ = ~p2, and hence F"[X~] ~' = F"[X2]h 

Now we define F:  [K]*--->2 by 

F ( p ) =  0 iff A w n  p(O)= Ap(oj for a l lp  E [K]h 

Let X be homogeneous  for F. 

CLAIM. F"[X] ~ = {0}. 
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PaooFov  CLAIM. Let  a be the least e lement  of X. Let X~ be homogeneous  for 

F~, and choose p E [X - a ]  ~, q E [X~ - a ]  ~ such that ,p = ~q. Then we have: 

F,,(q) = a,,, 

so A,oqn a = A~ 

so A j N a = A~ 

so F({a} U p )  = 0, 

and hence the claim is proved. 

Next consider {A~ I oc E X}. We claim that these sets all cohere, that is, if 

a,/3 E X, a </3, then A~ = Ao O a. To see this, simply let p E IX]"  be such that 

p ( 0 ) =  a, p(1) =/3  and let q = p  - p ( 0 ) .  Then 

A 0 n : (A ,0, n q (0)) n a 

=A.~A,~ 

= A . . n  p(0)  

m a  . 

We may thus define the set A C_ K by: 

a ~ A  i f f a E A ~  for a l l / 3 > a , / 3 G X .  

Let Y = ,~u 

CLAIM. Y and A satisfy the definition of y -weak  ineffability. 

PROOFOF CLAIM. Suppose p E [~Y]V. Then there is a q E [X] ~ such that ~ / =  p. 

Then for any 8 < p(0), 

6 E A p  i f f 6 E A p n q ( n )  for some n (since U q ( n ) = p ( 0 ) )  
\ n<~a  / 

iff 6 E A , ~ n q ( n )  for some n 

iff 6 E Aq~,) for some n (applying the homogenei ty  

of X for F to the sequence q - q ( n -  1)) 

iff 6 E A N p (0). 

This completes  the proof  of the theorem. []  

The  situation with ineffability, as opposed to weak ineffability, is less 

encouraging: 
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THEOREM 5. Given K, 3' ordinals, if 3" is greater than all regular cardinals below 

K, then K is not ),-ineffable. 

PROOF. For each p E[K]*, let 

I{0} if p contains a limit point of itself, 
Ap | 

l [  1} otherwise. 

We will show that {At,}eEl~j~ cannot have a stationary cohering set, for if X is 

stationary, and A is such that for all p ~ [X] ~, At, = A N p(0), then A must he 

either {0} or {1}. 

Clearly, A cannot be {0}, since a p E [X] ~ can easily be found containing no 

limit points. On the other  hand, consider (X) =- the set of limit points of X. (X) is 

a closed, unbounded set, hence X fq (X) ~ ~ .  Let  a E X M (X). By hypothesis, 

there is a sequence of points in X of length less than 3' with sup equal to a, thus 

there is a p E [X] ~ such that At, = {0}. This proves the theorem. []  

Since < 3' ineffability implies 8 ineffability for all 8 < % a similar result holds 

for < 3' ineffability. 

Our last theorem concerns < 3'-weak ineffability: 

THEOREM 6. I f  3" >--tO is a cardinal, then K--~ (K) <~ implies K is < 3"-weakly 

ineffable. 

PROOF. Suppose we are given sets {At,}p~l,l<~ such that for all p ~ [~]<~ 

At, _C p(0). For every tr ~ [3']<'~, we will define a partition F~: [K] * ~ 2 for some 

a < 3'. Since 3' is a cardinal, these partitions can all be coded up into one giant 

partition F : [ K ] < * - ~ 2 ,  such that any set X homogeneous for F will be 

homogeneous for all the F~, tr E [3']<'. We will show how an appropriately 

chosen homogeneous set for F is a cohering set for the A r 

We start by defining F~ : [K ]~2--~ 2, for a < K, by: if p ~ [K ]~, q E [K -- U p  ]~ 

F~ (p U q) = 0 if[ Ap and Aq cohere. Our  method will be to pick a homogeneous 

set for the partitions with the least possible first element. By adding to this 

partition we will show that if the sets fail to cohere, there must be a 

homogeneous  set with an even smaller first element. The new homogeneous  set 

will be obtained with the functions/~ : [K ]~'z ~ K, a < K defined by: if p E [ r  ]~, 

q E[K - U p ]  ~, 

p(0) if At,, Aq cohere; 

fo (p t3 q) = the least 8 < p (0) such that either 

E At,  - A,~ o r  8 E A q  - At ,  , otherwise. 
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Given any possible h o m o g e n e o u s  set X ~ [K ] ' ,  X = {/31,/32," �9 }, let p = X r a, 

q = (X - p )  [ a. If A~ and Aq do not  cohere,  then fa (17 U q)  </3~. W e  would  like 

to build a new h o m o g e n e o u s  set with fa (p O q)  as the first e lement .  W e  will 

carve this set out  of  f " [ X ]  ~'2. To  guaran tee  that  it will also be  homogeneous ,  we 

must  expand our  parti t ion.  For  every tr E [3,] <'~, or = al ,  as," �9 �9 a ,  we define a 

part i t ion F~: [K]" ~ 2 ,  where  a = ak " 2 " a k - , ' 2  . . . . .  a ~ . 2  as follows: if 

p E [K ]~ and p~, p2,- �9 ", p~," �9 "~<,, are the consecut ive  componen t s  of p of  length 

a k - 2  where  a ' =  a k - ~ ' 2 " . . . ' a l " 2  (i.e., for  each /3 < a ' ,  p ~ ( 0 ) =  > Us<~ Ups ,  

and p = p0 U pl U �9 �9 �9 U p~ U �9 �9 -~<~,), then 

F~ (p  ) = F~, ,k- , ( f~k (p l ) ,  f ,~ (p2), " " " , f,,~ (Pa ), " " " )~<~,. 

N o w  let F :  [~]< ' - -~2  be a part i t ion coding all the {F~}=EI~]<-. Let  /3~ be the 

least cardinal such that there  exists a set X h o m o g e n e o u s  for  F, with/31 E X. Let  

X E [K]* be such that /3~ E X and X is h o m o g e n e o u s  for  F. 

CLAIM. F~[X]  ~ 2 =  {0} for  all a < K. 

PROOF OF CLAIM. Suppose  not.  Then  for  some a, Ap and Aq don ' t  cohere,  

where p = X [ a and q = (X  - U p )  t a, hence  f~ (p U q)  </31. We  will define a 

set Y C f ~ [ X ]  ' 2 ,  Y = { a l ,  a 2 , "  "} as follows: a ,  = f ~ ( p  U q ) .  To  define ax, for  

)t < K, let /3 = )t be the sup of  all ordinals used in defining as for  8 < )t. Let  

p = U s < x a s ,  and let p ~ , p 2 , " ' , p ~ , ' " ~ < ,  be the successive a - s e q u e n c e s  of 

X - / 3 .  Cons ider  the K-sequence of subsets of p :  

p f') Ap,, p fq A~, �9 �9 �9 p fq Ap,, �9 �9 -,<,. 

As  in the p roof  of  T h e o r e m  3, there can be no K-sequence of  distinct subsets of  

p, so at least two of  these must  be equal. 

Since at least two of the sets are equal,  choose  the least such two, say p A A p~, 

and p f3 A p~ and let a~ = f~ (p~, U pt~) --> p. By the const ruct ion of  our  parti t ion,  Y 

must  also be h o m o g e n e o u s  for F - -  no te  simply that for  all r E[3 , ]  <~, 

F ~ Y ] ~ C  F ' ~ [ X ]  ~ 2 ~ ,  where  or' is the sequence  ~r with a added  at the end. 

Finally, since the least e lement  of Y is less than/31, we have a contradict ion,  and 

the claim is proved.  

Essentially we are now done.  For  every a < % if p, q E [X]  *, p (0) =< q (0), then 

there  is an r @ [ X ]  ~ such that U p ,  U q < r ( 0 ) ,  and since F ~ ( t g U r ) =  

F~ (q U r) = 0, we have:  

Ap and A, cohere ,  or  Av = A,  1"7 p (0) and 

Aq and A,  cohere,  or  Aq = A,  f3 q(0) 

so Ap = A q  f3 p (0) and Ap and Aq cohere.  
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This shows that X is a cohering set for the Ap, and completes the proof of the 

theorem. [] 

The hypothesis that 3' is a cardinal may be weakened to: " there  exists a 

one-one function f : [3 , ]  <~ '~3,  such that for all a l < a 2 < ' " < a ~ E %  

f ( a l ,  a 2 ,  " �9 " ,  a k  ) >= a k  �9 2 .  a k - ~  " 2 . . . . .  a ,  . 2", the sole purpose of such a map is 

to enable the partitions {F~,}~t~<- to be coded by one partition F. 

The case for 3' = co was first proved by Baumgartner  [2]. This proof was based 

on that appearing in [5]. 
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