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v-RAMSEY AND y-INEFFABLE CARDINALS'

BY
JAMES M. HENLE

ABSTRACT

A number of related combinatorial properties of a cardinal « contradicting AC
are examined. Chief results include: (1) For many ordinals y, x — (x)” implies
& = (k). (2) For many ordinals v, if « — (), for all & < k, then « is y-weakly
ineffable. (3) For all infinite cardinals y, k = (x)™” implies x is < y-weakly
ineffable.

In recent years there has been a growing interest in cardinals satisfying
infinite-exponent partition relations. Despite their incompatibility with the full
Axiom of Choice [9], the existence of such cardinals leads to many interesting
results [3], [4], [7], [8]- The proofs of these are often distinctive and appear to
have a flavor of their own. Drawing on few outside theorems and using methods
constrained by lack of Choice, they build on each other and create a delicate and
peculiar universe. At present these cardinals are chiefly obtainable through the
Axiom of Determinateness (AD) [10], [11]. AD in fact implies N, — (N:)™, a
property which, as we shall see, implies all those considered in this paper. Apart
from this, the consistency relative to other axioms of the existence of these
cardinals is unknown. As a measure of the difficulty Kleinberg has shown that
k — (k)** implies that the w-closed, unbounded filter is a measure on k, while
Martin has shown that a consequence of this is the existence of models of ZF
with very many measurables.

The most natural way to view cardinals satisfying infinite-exponent partition
relations is as infinite generalizations of weakly compact cardinals. Considera-
tion of this suggests infinite generalizations of similar but stronger cardinals:
Ramsey and ineffable cardinals. The purpose of this paper is to make the
necessary definitions and prove some general and specific results concerning
such cardinals.

' Many of the results in this paper appeared originally in the author’s doctoral dissertation.
Received March 13, 1977 and in revised form June 3, 1977
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Section 1 is concerned with y-Ramsey cardinals. The first and only previous
result on these is due to E. M. Kleinberg [7] who proved:

THEOREM. If k, y are any infinite ordinals, then
(@) k= (k)" implies k — (k)= for all a <k, and
(b) k = (x )= implies k — (k)™.

At first glance it seems apparent that the property of being y-Ramsey
(x = (x)77) is strictly weaker than satisfying k — (x)*. The problem, however, is
that with y-Ramsey cardinals, we are forced to deal with y-many partitions.
Nevertheless, that general principle is almost always true, though the question is
not yet closed. In this section we will prove for considerably many vy that
k —> (k)" does imply k — (x)~". The least y which will fail to be covered by the
theorems is the otherwise undistinguished ordinal, w * w + w.

Section 2 is concerned with y- and < y-ineffability and weak ineffability. It
will be easily seen from the definition that if « is y-weakly ineffable, then
k —> (k)3 for all @ < k. Motivated, as in the previous section, by a desire to
equate new cardinals with old, but using entirely different techniques, we will
show that for many ordinals y, k — (k )% for all & < « implies that « is y-weakly
ineffable. We will also prove that for all cardinals «, if k is y-Ramsey, then « is
< y-weakly ineffable. We will show further that it is not often possible for « to
be y- or < y-ineffable.

§0. Definitions

In this paper, k will always denote an uncountable cardinal. All other Greek
letters may represent arbitrary ordinals. For any «, v, the set [« ]" is the set of all
subsets of k of order-type y. We will sometimes view a member of [«]* as a
subset and sometimes as an increasing function from A to «. It will always be
clear from the context, however, which meaning is intended.

An infinite ordinal y with the property that a < y implies o + a <y is said to
be indecomposable‘ (sometimes called a “power of w).

Given any ordinal @ and set A, a cardinal « satisfies k — (k)3 iff for all
partitions F: [k]* — A, there is a set X C «, X =k such that F"[X]*=1.

In this notation, k — (x); may also be written k — (k)" If « does not satisfy
k — ()3, then we write k - (x)3, and if F if a partition which fails to have a
homogeneous set, we say it is a bad partition.

Certain facts are immediate from the definitions:
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Fact 1. If x is a cardinal satisfying k — (), and B < a, then x satisfies
Kk — (k)"

Fact 2. If a cardinal k satisfies k — (x )7, then « satisfies k — ()5, for all n.

The proofs of these facts are elementary. For the first, note that @ = 2 implies
K is regular by standard methods. Induction on n suffices for the second. Fact 1
implies among other things that x is weakly compact, and hence regular.

We say that « is y-Ramsey, or that « satisfies the relation x — (x)=” iff for all
partitions F: [«]™” — 2, there is a set X C«, X =« such that for all @ < Y,
F’{X)*=1. X is said to be homogeneous for F. Note that by this definition a
Ramsey cardinal is an w-Ramsey cardinal.’

Given k, y, « is said to be y-weakly ineffable (resp. y-ineffable) if given any
collection {A,},ci.» Of subsets of « such that for all p € [«]", A, C p(0), then
there exists a set X C x, X = « (resp. X stationary) and set A C « such that for
all p € [X]”, A, = A N p(0). We call X the cohering set for {A,},(r. Two sets
A, and A, such that p(0) = q(0) are said to cohere if A, = A, N p(0). Note: X is
a stationary subset of « if X intersects all closed, unbounded subsets of «.

For vy finite, y-weak ineffability is a strictly stronger property than k — (k )3
for all A < x. With AC, it is shown that the least « which is 1-ineffable, is greater
than cardinals satisfying k — (« )>» for all n < k, A < x. Among the more popular
large cardinals,” only the Ramsey cardinal is strong enough to be 1-weakly
ineffable. Ineffable, or 1-ineffable cardinals were invented by Jensen and Kunen
[6]. The hierarchy of n-ineffable cardinals was originally defined by Baumgart-
ner. The relationship between these and other cardinals is detailed in his papers
{11, 2}

Given k, v, k is said to be < y-weakly ineffable (resp. < y-ineffable) if given
any collection {A,},ep..< of subsets of x such that for all p € [x]™, A, Cp(0),
then there exists a set X C k, X = « (resp. X stationary) such that for all a <,
7,q €{X]1°, A, and A, cohere.

§1. y-Ramsey cardinals and obliging ordinals

An ordinal y is called obliging if it can be proved that k — (k)" implies
k — (k)™ for all cardinals « >y.

' Note that for all , « 7 {x)“~. The partition F: [«]** — 2 defined by: if p €[«]*, F{p)=0 iff
p(0) = a provides a counterexample.

** For example, none of the following cardinal properties guarantee weak ineffability: strong
inaccessibility, weak compactness, Mahlo, Jonsson, Rowbottom, a-Erdgs (the least y such that
y > (@)™).
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Our first goal will be to show that all indecomposable ordinals are obliging. To
this end, we require the following lemma:

LemMma 1. Given that an indecomposable ordinal vy is expressible as a - B, where
a and B are limit ordinals less than v, then vy is obliging.

ProoF. Suppose we are given a partition F: [k]™” — 2. We make the follow-
ing definitions: we shall say two sequences p,q € [«]" are similar whenever
F(plA)=F(qlA)forall A <y.

The set {A <y IF (p I A)=0} is called the similarity type of p.

If p € [«], let p = U;<sps, where the {ps}s<s are the successive blocks of p of
length a, i.e., for all §<B, p, €[p]* and if 8,<8,, then Up, =M p,,. If
q €[B)%, let p, be the element of [p]” consisting of U e, ps.

We now define G: [k]” —2 by: G(p) =0 iff for all ¢ € [B]P, p is similar to p,.
Since k — (« )", let X C k, X = k be homogeneous for G.

CLamm. G"[X] = {0}.

ProorF oF CLAIM. Let H: [k]? — 27 be defined by H(q) = the similarity type
of X, = Uscaxs where X = U,oxs xs € [X]* and 8, < 8,— Uys, = My,
P = erql’e-

Since B + B < v, Fact 1 and Kleinberg’s theorem imply k — (x )§», hence there
is a set YC«, Y=« homogeneous for H. Let ¢ €[Y]?. It follows that
Xz €[X]” and that G(x,) =0, and hence G"[X]* = {0}.

We now claim that X is homogeneous for F: Suppose that A <y and
P,q €[X]. Let p’ and q' extend p and g respectively such that p’,q’' €[ X]*™
for some n < B (since B is a limit ordinal), and let r €[X]* be such that
Up',Uq'=MNr,andsop”"=p’'Ur andq" = q'Ur are in [X]” by the indecom-
posability of y. Then since G"[X]” = {0} the similarity types of p”,q" and r are
the same. so

F(p)=F(p"lA)=F(q"[A)=F(q).
This completes the proof of Lemma 1. ]

THEOREM 1. For any ordinal v, if vy is indecomposable, then vy is obliging.

Proor. Let F:[k]™ —2 be any partition. For any p € [k]” consider the
following list of equations:

F(p(0))=F(p(1)),
F(p(2),p@3))=F(p4),p());
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where in general, the Bth equation for B <y is
F(p(ap),plasg+1), - ,p(ag+8), " )s<p

=F(p(aﬁ+B)""’p(aB+B+8)"“)6<ﬁ
and where a,=0, a, =2, and

agn=ogt+ B2,

a, = |J ag for A a limit ordinal.
B<A

We have two cases:

Case 1. We are unable to complete the list because for some 8 < 8, ap = .

Case 2. The length of p, vy, is large enough to complete this list.

First, case 1. Suppose we have used up all of p before the Bth equation. Then
(B+B)-B=y. Let « be the least ordinal such that for some § <y, a -6 v,
and let & be the least ordinal such that « - § =Z y. By the indecomposability of v,
8 is a limit ordinal, and hence so is a. Since a - A <y forall A < §, it then follows
that @ - § = y. Lemma 1, then, shows that vy is obliging.

Now, case 2. We define a partition G: [x]” — 2 by:

for any p €[«]", G(p)=0 iff all the equations in the list are true. Let
X €[x]", X = k be homogeneous for G.

Crammv. G"[X]" ={0}.

Proor oF CLamM. Simply define a sequence p € [X]” such that G(p)=0 as
follows:

Let p(0), p(1) be the least elements of X such that F(p(0))= F(p(1)) and
continue in this way. To avoid any use of the Axiom of Choice, choose the
members of p consecutively: suppose we have chosen enough elements of p to
satisfy the first B equations for all 8 < a. To satisfy the ath equation, take the
first a -3 members of X greater than all members of p chosen so far:
80,81, *, 8y "+ *n<a-3 and consider F(8o,*, 8y Jn<ar F(Bus* "y 8atmy ™" * J<a
and F(8.+a """ Oara+n ' * " Jn<a- IWO of these must be equal, and whichever
they are, add the appropriate eclements to p. When p is complete, all the
equations are true, and G(p) =0, proving the claim.

To complete the proof of the theorem, we observe that X, minus its first vy
members constitutes a homogeneous set for F, for suppose for some a <y,
p,q €[X — X(y)]* Let r €[X]* be such that Up, Ug < r(0), and then form
$1, 52 € [X]” such that for s,, the ath equation in the list reads “F(p)= F(r)”,
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and such that for s,, the ath equation in the list reads “F(q)= F(r)”. Since
G(s1) = G(s:) = 0, these equations are both true, and hence F(p) = F(q). a

The situation where y =a + 8, a, B <y is more difficult. The following
results cover a number of cases, but by no means all.

THEOREM 2. If y is obliging, then y + n is obliging for all n < w.

Proor. By induction on n. If y+n-—1 is obliging, any partition
F:[«]="*"— 2 can be handled in two steps, first find X C k, X = x homogene-
ous for F[[«]**"", then find Y C X, Y = « homogeneous for F|[«x]"*"".

The next lemma and theorem can be viewed as an extension of Kleinberg’s
theorem.

LeMMA 2. Suppose « satisfies k — (k)**?, where a is obliging and B=a is
indecomposable. Then: k — (k)™** iff k = (k)5

- PROOF. Suppose k satisfies k — (x)“**?. Then if we are given any partition
F:[x]*—2? we can define a partition G: [x]**"#—2 as follows: if p € [«]",
A <a+pB then:if A <a, G(p)=0, otherwise; if A = a + 6 for some 8 < B, then
G{p)=1ift € F(pla).

If X is any set homogeneous for G, it must also be homogeneous for F. If
p.q €[X]" and 8 < B, simply let r €[X]* be such that Up, Uq = Mr. Then
SEF(p)iff GpUr)=1iff G(quUr)=1iff § EF(q).

Going the other way, suppose F:[«]“**#—2 is any partition. Since a is
obliging, let X Ck, X =« be homogeneous for F[[x]*. Next, define
G: [X]** —>2 by: if pUq €[X]*** (p €[X], q€[X],, Up=g), then
G(p Uq)=0iff q is homogeneous for p, that is, G(pUgq)=0iff forall A <B
and for all ¢’,q" € [q]", F(p Uq')= F(p Uq"). Let Y C X be homogeneous for
FY =«

Cramm. G'Y]**® = {0}.
ProoF oF CLaiM. Choose any p € [X]* and define H: [Y — Up]*® -2 by
H(q)=F(p Uq)forallqg €[Y - Up]=*. Since B = a, we have k — (x)***, and

so by Klieinberg’s theorem, there is a set Z C Y — Up homogeneous for H.
Then, if ¢ €[Z]? then G(p Uq) =0, hence G"[Y]*** ={0}.

Cramm. For any p €[Y]% Y — Up is homogeneous for F with p, that is, if
8<B and sy, 5,€[Y— UpJ’, then F(p Us,)=F(p Us,).

ProoF oF CLaM. Given any such p, s, s, let s;€[Y ~ Up]® be such that
Us,, Us, < 55(0). Since B is indecomposable, let q:,q.€[Y — Up]® be such
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that s, UssC gy, 5:Us3C q2. Then since G(p Ugq,)= G(p Uqz)=0, we have
F(p Us))=F(p Us;)= F(p Us,), proving the claim.

As a consequence of this, for any p € [ Y], there is associated a subset I(p) of
B defined by:

sel(p)ififorallge[Y - UpJ, Fpugq)=1.
This defines a partition I: [Y]* > 2°. Let ZC Y, Z = k, be homogeneous for L.
CramM. Z is homogeneous for F.

Proor oF CLaM. Suppose sy, 5, € [Z]°**. If §, = 5. < o, then F(s:) = F(s;) by
the homogeneity of X. If §, =5, Z @, and p: = s, [ &, p>= s5:[ @, let g4, 2 be such
that D1 @] qi= 5 and p2qu= S2, Uplg nql, Up2§ nqz and let § = ql = (?2.
Then,

F(s))=1iff § € I(p,) iff 6 € I(p,) iff F(s;)=1.
This completes the proof of the lemma. a
THeOREM 3. If y is indecomposable, then for all n = 1, vy - n is obliging.

Proor. The proof is by induction on n. The case for n =1 is covered by
Theorem 1.

Suppose vy - n is obliging, n < w. By the previous lemma, to prove y - (n + 1)
obliging, it suffices to show that k — (x)2,". In the interests of generality, we will
show k — (k)" for all @ < « in two stages. Our first step will be to show that
k — (k)2 for all @ <« is a consequence of k — (k)" ™"V,

Suppose F: [«]” "— « is any partition. Let G: [x]"""”— 3 be the following

partition: if po, ps, - *,Pa € [«]", and Up; = Mp,., for all i <n, then:

O iﬁF(poU'"Up,._l)=F(p1U"'Up,.)

G(poU~~-Up,.)={1 iff F(poU-++ U pay)>F(pU- -+ Upy)
2 iﬁF(pOU"’Up,,_l)<F(p1U"'Up,,).

By Fact 2, x — ()} "*". Let X C «, X = x be homogeneous for G.
CLam. G'[X] "= {0}.

Proor oF CLamm. Clearly G"[X]" """ # {1} for we could then choose for all
n < w, p. €[X] such that Up, < M p.., and then

F(poU'"'Up,.~1)>F(p1U"'Up..)>'">F(p.,U"'Upn+qv1)>'”

an impossibility.
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Suppose G"[X]" """ = {2}. Let {gs}s<a+1 be successive sequences from [X] of
length y-n, ie, for all §<a+1, ¢ €E[X]) " and §<8'<a +1 implies
Ugs < Mg, . For each §<a +1, let pso,Pas,” " *»Pan-1, be the successive y
sequences composing ¢gs. Then for all § <8'<a +1,

F(qs)=F(PsoUps1U---Upsn-1)
<F(ps1U -+ Upsn1Ups,o)

< F(Pa',ou tee Ups’m—l)
= F(g»).

Thus, {F(gs)}s<. forms an increasing a-sequence, and F(q.) = e, an impossibil-
ity, proving the claim.

We now claim that X is homogeneous for F, for if p,q € [ X} ", let r € [X]"™"
be such that Up, Uq < Mr. Once again, let po, p1,** * ,Pa—1@and ro, 11, -+, 1,1 be
the successive y sequences of p and r respectively. Since G"[X]" """ = {0},

F(p)=F{@oU---Up,.1Ur)

=F(p,U--Up,,Ur,Ur)

=F(roU---Ur,y)
= F(r).

Similarly, F(q)= F(r) and X is homogeneous for F.
Using the relation, k — (k). " for all « <« we will now show k — (k)J.".
Suppose F:[«]""—2 to be any partition, @ < k. Let G: [«k]""—a be
defined as follows: if p € [x]""", then :

0 if F(p)=F(q), for all g €[p]"™",
B +1 if B is the least ordinal such that for
some g €[p]”™", B is in one, but not
both of the sets F(p), F(q).

Gp)=
Let X Ck, X =k, be homogeneous for G.
CLam. G'[X]" "= {0}.

Proor oF CLamM. Suppose G"[X]""={B +1}. Define H:[X]" "—2 by
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H(p)=1ift B € F(p), for all p €[X]" ™" Let Y C X, Y = «, be homogeneous
for H. It is clear that for any p €[Y]" " and q € [p]"™",

Fp)nB=F(@)NgB by the homogeneity of X,
Fp)Nn(B+1)=F(@)N(B +1) by the homogeneity of Y,

hence G(p)> B + 1, a contradiction, and the claim is proved.

Suppose now that p,g € [X]"'" are such that the consecutive supremums of
their consecutive y-sequences are the same, i.e., that p = p,U--- U p._; and
q=qoU: " Ugn, pi,q €[X], and that Up, = Ug,, for all i. It then follows
that F(p) = F(q), because each p; U ¢q; is a member of [ X]" (a consequence of
v’s indecomposability) and so p U q € [X]" ™. Thus G(p U q) =0 implying that
F(p)=F(p Yq)=F(q). Hence, we may make the following unambiguous
definition: H: [k]" — 2 is defined by: for all (Bo, B1,- -, Ba-1) € [« ],

A if for all i <n there is a p; €[X],
H({Bo, B2r** " Ba-1)) = with Up, = g, < an and
F(POU' e Up,._l)=A
(J otherwise.

Since [«]" is well-orderable, H"[«]" is well-ordered. By the above arguments,
H"[«]" 2 F"[X]"". By a well-known theorem, there can be no x sequence of
distinct elements of 2* (the proof requires no more than k — (k)*, see [7]), thus
the cardinality of F"[X]""is B <«. Let f: F"[X]""— B be a one-one map.
Since x — (x)3", there is a homogeneous set Y C X, Y =k such that Y is
homogeneous for f o F. Y is then homogeneous for F. This completes the proof
of Theorem 3. O
As a corollary, we have:

CoroLLARY." For all indecomposable vy,
1) k > (k)" """ implies k — (k)3 " for all B <k, and
2) k =>(k)p'" for all B <k implies k — (x)2" for all B < k.

The hypothesis that « < y implies & + a < y was used only once, and it seems
avoidable, though not without difficulty or new techniques.
The least infinite ordinal not covered by Theorems 1, 2, and 3 is @ * @ + w.

’ Baumgartner has pointed out to me that the techniques of the previous proof can be cleverly
expanded to yield: “if A is a limit ordinal, then x — (i ); implies x — (x ),.”". The restriction that A is
a limit can also be eliminated.
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Since proving this obliging will require proving that k — (k
k = (k). it does not look easy.

In closing this section, it should be noted that a simple application of the
techniques used above will produce results of the following sort: If y is
sufficiently large (a cardinal, for example, or a Ap,-admissable, etc.) then
k —> (k)= implies k — (k )=” for all & < y, where this latter property is defined in
the obvious way.

)m~m+w

implies

§2. y- and < y-ineffable cardinals

The property of being y-weakly ineffable implies k — (k)2 for all @ < «, and
in fact implies k — (k )}. for all @ < «, for if we are given a paftition F: [k} —27,
we can define for all p € [« — a}’, A, = F(p), and it follows that any cohering set
for the A, must be homogeneous for F. Thus, if we are to prove a cardinal « to
be y-weakly ineffable, we must start with at least k — (k). for all @ <«.

THEOREM 4. If k = (k). for all « <k and w -y =1, then « is y-weakly
ineffable.

PROOF. Some necessary notation first. For any sequence p € [« ]", let ,p be the
sequence consisting of the consecutive w-sups of p, i.e., since w -y =1, let
p=poUpiU---UpsU---s., where p; €[p]° for each 8 <y, and where
8§ <8<y implies Up, = Mps.

Then .p is the sequence, U po, Up,, Up,, - - or, ,p(8)=Up; for all
6 <.

Now, suppose we are given a collection {A, },<.)» of subsets of « such that for
all p €[«]", A, Cp(0). For any a <k, let F,: [x]” — 2% be the partition:

F.(p)=A_,Na, forallpe(«].

By k — (k )%, there is a homogeneous set X for F. Let A, = Fi[X]". A, does not
depend on the choice of X, for if X, and X, are both homogeneous, we could
choose p, € [X1], p. € [X:]” such that for all 8, p,(8) < p(8) < pi(8 + 1). In this
way, .P1 = JP2 and hence Fi[X,]” = FiIX.)"

Now we define F: [x}* —2 by

F(p)= 0 iff Awﬂ p(0)= Ap(o) for all 14 S [K]'y.
Let X be homogeneous for F.

Cramm. F'[X]" = {0}.
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ProoroF CLAIM. Let a be the least element of X. Let X, be homogeneous for
F,, and choose p €[X — a]", ¢ € [X. — a]” such that ,p = .q. Then we have:
F.(q) = A,

sOo A,«sNa=A,
SO Awpna =Aa
so F(la}Up) =0,

and hence the claim is proved.

Next consider {A. |a € X}. We claim that these sets all cohere, that is, if
a, B € X, a < B, then A, = Az N a. To see this, simply let p € [ X]” be such that
p(0)=a, p(1)=B and let g = p — p(0). Then

AsNa=(A.NgO)Na
=Awaﬂa

=A.Np0)
= A..

We may thus define the set A C « by:
a€EAiffa€AgforallB>a, BEX.
Let Y =.X.
CLamm. Y and A satisfy the definition of y-weak ineffability.
ProoF oF CLAIM. Suppose p € ‘[‘Y]”. Then there is a ¢ € [ X]” such that ,q = p.
Then for any & < p(0),
SEA, iff 8 € A, N q(n) for some n (since U a(n= p(O))

iff 6€ A _Ngq(n)for some n

iff 8§ € Ay for some n (applying the homogeneity
of X for F to the sequence g —q(n —1))

iff 5€ A Np(0).

This completes the proof of the theorem. O
The situation with ineffability, as opposed to weak ineffability, is less
encouraging:
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THEOREM 5. Given k, y ordinals, if v is greater than all regular cardinals below
K, then k is not y-ineffable.

Proor. For each p € [«]?, let

{{O} if p contains a limit point of itself,
A, =

{1} otherwise.

We will show that {A,},<.» cannot have a stationary cohering set, for if X is
stationary, and A is such that for all p € [X]*, A, = A N p(0), then A must be
either {0} or {1}.

Clearly, A cannot be {0}, since a p € [X]” can easily be found containing no
limit points. On the other hand, consider (X) = the set of limit points of X. (X)is
a closed, unbounded set, hence X N(X)# . Let « € X N (X). By hypothesis,
there is a sequence of points in X of length less than y with sup equal to «, thus
there is a p € [ X]" such that A, = {0}. This proves the theorem. |

Since < y ineffability implies 8§ ineffability for all 6 < vy, a similar result holds
for <y ineffability.

Our last theorem concerns < y-weak ineffability:

THeOREM 6. If ¥ = w is a cardinal, then xk — (k)" implies k is < y-weakly
ineffable.

Proor. Suppose we are given sets {A,} e < such that for all p € [«]™
A, C p(0). For every o € [y]™“, we will define a partition F,: [k]* — 2 for some
a < y. Since ¥ is a cardinal, these partitions can all be coded up into one giant
partition F:[k]™ —2, such that any set X homogeneous for F will be
homogeneous for all the F,,o €[y]™. We will show how an appropriately
chosen homogeneous set for F is a cohering set for the A,.

We start by defining F,: [x]**—2, for a <k, by: if p € [«]*, q € [« — Up]",
F.(pUg)=0iff A, and A, cohere. Our method will be to pick a homogeneous
set for the partitions with the least possible first element. By adding to this
partition we will show that if the sets fail to cohere, there must be a
homogeneous set with an even smaller first element. The new homogeneous set
will be obtained with the functions f.: {x]**— k, @ < k defined by: if p € [«]*,
q €« -Upl,

p(0) if A,, A, cohere;
f(pugq)= { the least 8§ < p(0) such that either
S§EA,—A, or § €A, — A, otherwise.
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Given any possible homogeneous set X € [« ], X = {B1, B2, - L letp =X q,
qg=(X-p)lalf A, and A, do not cohere, then £, (p U q) < B:. We would like
to build a new homogeneous set with f,(p Uq) as the first element. We will
carve this set out of f2[ X]* 2. To guarantee that it will also be homogeneous, we
must expand our partition. For every o € [y]™, 0 = aj, a,, - - - @ we define a
partition F,:[x]* —2, where a=ax-2-ax1-2- - ;-2 as follows: if
p E[x]* and py, p2, -+, Ps, * * *s<a- are the consecutive components of p of length
o -2 where a'=a,_,-2-...-a, 2 (i.e., for each B<a’, ps(0)= Us-s Ups,
and p=poUp,U-+-UpgU---g.a), then

Fo () = Foreaslfa (01), fur (P2, * * +» feue (P8)s * * * Doz
Now let F: [k]™"— 2 be a partition coding all the {F,},ef,<=. Let B, be the
least cardinal such that there exists a set X homogeneous for F, with 8, € X. Let
X € [«]* be such that 8, € X and X is homogeneous for F.

Cramm. FJ[X]*7?={0} for all @ <«.

Proor of CLamm. Suppose not. Then for some a, A, and A, don’t cohere,
where p = X | a and ¢ = (X — Up)| , hence f, (p U q) < B:. We will define a
set Y Cfa[X1°? Y ={ai,as -} as follows: a, = f, (p Uq). To define a,, for
A <k, let B = A be the sup of all ordinals used in defining @, for § < A. Let
p=Uscias, and let pi,ps,- +,po - nee be the successive a-sequences of
X — B. Consider the k-sequence of subsets of p:

pnAPl’pnAPza"'vpnAPn7“'n<K'

As in the proof of Theorem 3, there can be no k-sequence of distinct subsets of
p, so at least two of these must be equal.

Since at least two of the sets are equal, choose the least such two, say p N A,
andp N A, andlet &, = f.(ps, U ps,) = p. By the construction of our partition, Y
must also be homogeneous for F — note simply that for all o €[y]™,
FIY)? C Fy[X]* %" where o' is the sequence o with a added at the end.
Finally, since the least element of Y is less than B,, we have a contradiction, and
the claim is proved.

Essentially we are now done. For every a <y, if p,q € [X]*, p(0) = q(0), then
there is an re[X]* such that Up, Ug <r(0), and since F,(pUr)=
F.{(q Ur)=0, we have:

A, and A, cohere, or A, = A, N p(0) and
A, and A, cohere, or A, = A, N q(0)

so A, = A, Np(0)and A, and A, cohere.
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This shows that X is a cohering set for the A,, and completes the proof of the
theorem. a

The hypothesis that y is a cardinal may be weakened to: ‘“there exists a
one-one function f:[y]™ — v such that for all a;<a,<---<a,€E¥,
flaj,az, ;) Z a2 ax-y*2+ -+ - a; 27, the sole purpose of such a map is
to enable the partitions {F,},er,<~ to be coded by one partition F.

The case for y = w was first proved by Baumgartner [2]. This proof was based
on that appearing in [5].
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